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Foreword

The terrorist attack that took place on September 11, 2001 in New York City
resulted in thousands of lives lost, the collapse of the twin towers of the World
Trade Center as well as damage to adjacent buildings, and extensive disruption
of transportation and other lifeline systems, economic activity, and other social
activities within the city and the surrounding area.  When the final accounting
takes place, this attack will almost certainly constitute one of the most deadly
and costly disaster events in U. S. history.

In a very real sense, the September 11 tragedy, the nature of the damage that
occurred, the challenges that the city's emergency response faced, and the actions
that were undertaken to meet those demands can be seen as a "proxy"-albeit a
geographically concentrated one-for what a major earthquake can do in a
complex, densely-populated modern urban environment.  Like an earthquake,
the terrorist attack occurred with virtually no warning.  As would be expected
in an earthquake, fires broke out and multiple structural collapses occurred.  As
has been observed in major urban earthquakes and in other disasters (e.g.,
Hurricane Andrew), structures housing facilities that perform critical emergency
functions were destroyed, heavily damaged, or evacuated for life-safety reasons.
Additionally, because the majority of the damage occurred to relatively new
and well-engineered structures and because the emergency response system in
New York City was considered very well prepared for all types of emergencies,
particularly terrorist attacks, the attack and its aftermath provide a useful
laboratory for exploring a variety of engineering and emergency management
issues.

In this perspective, the Multidisciplinary Center for Earthquake Engineering
Research initiated a research project (funded by the National Science Foundation)
to collect perishable data in the aftermath of the attack for later study to gain a
better understanding of how resilience is achieved in both physical, engineered
systems and in organizational systems.  The project is divided into two major
components, focusing on the impact of the disaster on engineering and
organizational systems:

(a) Damage to Buildings in the Vicinity of Ground Zero - The objective of this
effort is to collect perishable information on the various types of damage
suffered by buildings at Ground Zero, including, most importantly, those
that suffered moderate damage from the impact of large debris but that did
not collapse, and to investigate whether state-of-practice analytical methods
used in earthquake engineering can be used to explain the observed structural
behavior.
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(b) Organizational and Community Resilience in the World Trade Center Disaster
- The objective of this effort is to collect information on the response activities
of the City's Emergency Operations Center and on other critical emergency
response facilities. Of particular interest is to identify the plans that were in
place at the time of the disaster, as well as how decision systems and remote
sensing technologies were used and coordinated with engineering decisions.
Efforts will also include identifying the technologies and tools that were
most useful or failed (or did not meet expectations) during the emergency
period, the types of adaptations that had to be made by these organizations,
how well intra-organizational communication and coordination functioned,
and whether any emerging technologies were used during the emergency
period.

The MCEER special report series "Engineering and Organizational Issues Related
to The World Trade Center Terrorist Attack" was initiated to present the findings
from this work. The decision to publish a number of brief individual reports
focusing on different topics was prompted by the desire to provide timely access
to this information.  As such, each report in the series focuses on a narrow aspect
of the disaster as studied by MCEER researchers.  A compendium of these short
reports is planned at a later time.  It is hoped that this work will provide a
useful contribution that can lead to a better understanding of how to cost-
effectively enhance the resilience of buildings against catastrophic events.
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 

A combination of factors culminated in a breakthrough for remote sensing
technology in emergency management, following the events of September 11th.
First, the World Trade Center attack is an event unparalleled in history.  The
devastation was beyond the imaginative capabilities of emergency management
professionals - there was simply no appropriate script for such an event.  The
demand for information proved to be immense.  Second, Manhattan is unique
in the United States because of the density of high-rise buildings and the value
of real estate.  Because of this, and the logistical needs that follow, the City of
New York had already undertaken intense mapping efforts, resulting in the
production of highly accurate vector and raster databases.  Third, even though
this was a very large disaster, the scale of events in New York was highly
localized, with primary impacts concentrated in a small geographic area.  The
need to coordinate the response for an event of this magnitude, in a dense yet
relatively small area, made the combination of imagery and data maps
particularly useful.

As an emerging technology in emergency response, a thorough evaluation of
the value added by remote sensing data is warranted.  However, the value of
this data can be partially established by its use.  Many top officials worked with
the detailed images and maps of Ground Zero. Mayor Guliani visited the
Emergency Mapping and Data Center (EMDC) on a daily basis to examine the
images and map products. Chief Phiefer and Chief Werner from the New York
Fire Department (FDNY) were also frequently at the EMDC, gathering imagery
for planning purposes.  Standing before the United States Congress Committee
on Science, the role played by remote sensing technology during the initial
response was formally acknowledged by Robert Shea, representing the Federal
Emergency Management Agency (FEMA, 2002).  President Bush and Donald
Rumsfeld, Secretary of Defense are featured on the front cover of Geospatial
Solutions (April 2002) examining high-resolution images of damage at the
Pentagon.  Across the world, newspapers published IKONOS images that
illustrated the magnitude of devastation.  It is clear that remote sensing played
a vital role in communication during the months that followed September 11th.

Remote sensing data is most valuable for emergency responders when integrated
into a Geographic Information System (GIS).  The capabilities of GIS units to
spatially analyze multivariate data is almost endless.  The GIS analyst needs to
know which combination of data, processed in what manner, would be most
valuable to the response teams.  Modeling, geospatial analysis, regression
analysis, image processing, change detection, data mining, damage assessment
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and other advanced forms of analysis may be factored into the process, but to a
limited extent.

As with any information systems product, communication, input, and feedback
from end users is essential.  The end user may not utilize GIS units to the fullest
extent, as they are not aware of all potential capabilities.  After a disaster, both
the end user and GIS personnel are extremely busy, stressed, and sometimes
emotionally volatile.  This is not the best time to assess needs, or learn new
material.  The data sources and tools should be presented to emergency
management personnel before the incident so that they know what will be most
useful.  The concepts, as well as the end products, need to be documented.  For
example, it is clear to many that the GIS and remote sensing response would
have been more effective after September 11th had there been onsite mobile
units.  Also, it is clear the primary responders, the FDNY, were able to make
tremendous use of maps and remote sensing data during this disaster.  This
may be due in part to the influence of the remote sensing unit within the
department (Phoenix Photography and Imagery Group).

The purpose of this report is to document the use of remote sensing in response
to the World Trade Center attack.  Approaches that worked should not be
forgotten, such as overlaying the building footprints onto images of rubble to
locate elevator shafts, where bodies were later found.  Problems that were
encountered should not be dismissed, such as the need for absolute temperatures,
rather than arbitrary digital numbers.  There are technologies such as Light
Detection and Ranging (LIDAR) imagery that some found useful, while others
questioned their value.  There were also ideas that analysts had no time to
investigate during emergency response, because they were overwhelmed with
map requests.  Through interviewing, and in a sense "brain-storming" with key
GIS personnel that were involved, this report will address how each remote
sensing data set was used, and how it might have been used if there had been
more time dedicated to processing the data.  New ideas are also presented for
using the data collected.  The general lack of experience with remote sensing
technology as a tool in emergency management and threat of further disasters,
especially from terrorism, underscores the need to harness the knowledge of
those who responded to the World Trade Center incident, and to the extent
possible, create a script for future events.

Although this report does not present a general timeline of events as they
unfolded, specific occurrences after the incident are valuable for establishing
the ways in which remotely sensed data can be used after a disaster.  Section 2
of this report therefore documents the sequence of key events, including the
timing of data acquisition and release of map-based products that proved pivotal
to the integration of remote sensing data in emergency operations.
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While Global Positioning System (GPS) technology, certain surveying equipment,
and hand-held electronic devices can be considered remote sensing devices, the
current emphasis is on airborne and satellite data with a resolution greater than
20 meters.  These data sets are generally delivered in, or converted to a raster
environment, which forms a two- or three-dimensional surface over the entire
area analyzed. Because of this spatial ubiquity and multi-temporal acquisition,
these types of remote sensing data are very useful for assessing emergency
response requirements, especially in conjunction with other data.  Given the
localized scale of events, it is unlikely that lower resolution data, from systems
such as Landsat TM, ERS and MODIS, would have been useful.  The catalog of
primary remote sensing data used to support emergency operations is described
fully in Section 3.  Each sensor is accompanied with a brief description for laymen,
a discussion of how the data was used, problems that were encountered using
the data, and how such data might be used in future events.  While the focus is
shifted away from organizational, GIS, database, or other issues that impacted
the use of advanced technologies, problems in these areas that directly impeded
the use of, or were addressed using remote sensing data, are briefly discussed.

Although highly valued and of widespread use following September 11th, it is
important to recognize that with better planning and preparedness, remote
sensing and GIS could have played an even greater role.  Based upon information
gathered from interviews with key individuals involved in the emergency
response, Section 4 considers lessons learned with respect to data acquisition,
processing and logistical aspects of integrating remote sensing and GIS into
emergency operations.  Working with post-event imagery, new methods of data
visualization are also presented, which may have proved useful for response
and recovery teams.  These findings establish the basis for a series of
recommendations for future applications of remote sensing in disaster
management, which are presented in Section 5. Interviews undertaken with
key emergency management and GIS personnel constitute the main source of
information for this document.  Coupled with ImageCat’s knowledge of remote
sensing and emergency response, these accounts underpin the evaluation of
the role played by advanced spatial technologies following September 11th.
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 

The following section provides a historical view of the role played by remote
sensing data and GIS technology in the first critical weeks after September 11th.
First, a summary of key events is provided, which was produced using
information from published documents, written accounts (see, for example,
Geoplace.com, 2001b), and interviews conducted by ImageCat with personnel
involved in emergency operations.  Details are then given of the remote sensing
datasets acquired at the World Trade Center, including the data source or
platform, type of imagery, and date of release to response and recovery workers.
Table 2-1 provides a timeline of the acquisition of remote sensing data.

Tuesday 11th September 2001

• The World Trade Center is attacked.

• Commercial air traffic ban instituted.

• SPOT sensor acquires satellite coverage of Ground Zero, and images are
posted on the Internet.

• Collapsed buildings include 7 World Trade Center, where the New York
City map and municipal geographic database were housed.

• Hard-copy maps of World Trade Center are delivered by Alan Leidner
(Department of Information Technology and Telecommunications
(DOITT)) to the new emergency center at the New York (NY) City Police
Academy.

Wednesday 12th September 2001

• NY State Office of Technology (OFT) coordinates with Alan Leidner and
Sean Ahearn (Professor of Geography at Hunter College), to develop a
list of remote sensing needs. This includes orthophotography, LIDAR
and thermal data.

• OFT investigates the logistics of gathering data, including getting
permission to fly.

• IKONOS sensor acquires satellite coverage of Ground Zero, and images
are posted on the Internet and published in newspapers around the world.

• A backup copy of the New York City GIS database (comprising digital
orthophotographs of the city, and vector attributes including streets,
building footprints, transport networks, rivers and waterways) is set up



6

as a base map for GIS operations, by Al Leidner and Sean Ahearn, at the
temporary Emergency Mapping Center at the NY Police Academy.

Thursday 13th September 2001

• The Federal Aviation Authority lifts the air traffic ban for approved
aircraft.

• Digital photographs are obtained by the Fire Department Phoenix
Photography and Imagery Group, by holding a digital camera out of the
window of a police helicopter.

• Vertical aerial photographs are flown by Keystone Aerial Surveys for the
NY State Emergency Management Office (SEMO).

Friday 14th September 2001

• The OFT awards the contract for remote sensing data to EarthData
International.

• The EMDC is moved from the NY Police Academy to Pier 92 on the
Hudson River.  The center houses organizations with remote sensing and
GIS expertise, from the DOITT, the Deep Infrastructure Group, the New
York Parks Department, ESRI and Plangraphics.

• EarthData sets up a centralized data collection and processing facility in
Albany.

Saturday 15th September 2001

• EarthData flies the first round of aerial photography, LIDAR and thermal
imagery.  The data is received on removable disk and processed in Albany.

• Three centers for GIS are up and running: (1) EMDC on Pier 92, dealing
both with Ground Zero and the wider New York area; (2) FEMA Disaster
Field Office on Pier 90; and (3) Urban Search and Rescue at the Jacob K.
Javits Convention Center, focusing on Ground Zero alone.

Sunday 16th September 2001

• AVIRIS hyperspectral sensor is first deployed by the Jet Propulsion
Laboratory (JPL) and the National Aeronautical and Space Administration
(NASA) to acquire visible and thermal imagery of Ground Zero.

Monday 17th September 2001

• The State police and Metropolitan Transit Authority police deliver the
remotely sensed EarthData images on CD-ROM to emergency response
workers.  The data circulation list includes: the FDNY; FEMA;
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Environmental Protection Agency (EPA); US Army Corps of Engineers;
and the State Office of Emergency Management (OEM).  For data security
and confidentiality, new users require approval from Al Leidner.

September/October 2001

• Remote sensing data became available on-line at the OFT and EROS data
center. Initially this was limited to the processed imagery.  Later,
information was added concerning the flight history, data specifications
and remotes sensing devices.

• 50 standard maps are produced at the EMDC and revised every one or
two  days.  In total, more than 2,000 requests are made and 10,000 maps
produced. In terms of accuracy, all maps satisfy the national mapping
standards of +/- 2ft.

• FEMA sets up a separate data acquisition contract with EarthData
Aviation, to map the debris disposal ground on Staten Island.

 Table 2.1.  Timeline showing the acquisition of remote sensing data for Ground Zero.

Continued on next page

Date Source Type of Data Comments

9/11/2001 SPOT Multispectral and
panchromatic imagery

Data available on Internet

9/12/2001 IKONOS Multispectral and
panchromatic imagery

Data available on Internet

9/13/2001 Fire Department Digital photographs
(oblique)

Keystone Digital photographs
(vertical)

9/14/2001

9/15/2001 EarthData Digital aerial photographs
(vertical)
LIDAR imagery

IKONOS Multispectral and
panchromatic imagery

9/16/2001 AVIRIS
EarthData

Hyperspectral imagery
Thermal imagery

9/17/2001 EarthData Digital aerial photographs
(vertical)
LIDAR imagery
Thermal imagery

EarthData releases orthophotos and
thermal imagery of Ground Zero

9/18/2001 AVIRIS
EarthData

Hyperspectral imagery
Thermal imagery

EarthData releases LIDAR imagery;
AVIRIS thermal data released

9/19/2001 EarthData Digital aerial photographs
(vertical)
LIDAR imagery
Thermal imagery
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 Table 2.1.  Timeline showing the acquisition of remote sensing data
for Ground Zero (Continued).

Date Source Type of Data Comments

9/20/2001 EarthData LIDAR imagery
Thermal imagery

EarthData releases orthophotos and
LIDAR imagery of Lower Manhattan

9/21/2001 EarthData Digital aerial photographs
(vertical)
LIDAR imagery
Thermal imagery

Poor photography and thermal data due to
cloud cover
EarthData releases orthophotos and
LIDAR imagery of Staten Island

9/22/2001 AVIRIS
EarthData

Hyperspectral imagery
Digital aerial photographs
(vertical)
LIDAR imagery
Thermal imagery

9/23/2001 EarthData LIDAR imagery
Thermal imagery

AVIRIS Hyperspectral imagery

NOAA LIDAR imagery
Aerial photography
(vertical)

9/24/2001 Poor weather conditions

9/25/2001 EarthData LIDAR imagery
Thermal imagery

9/26/2001 EarthData Digital aerial photographs
(vertical)
LIDAR imagery
Thermal imagery

NOAA LIDAR imagery
Aerial photography
(vertical)

9/27/2001 EarthData

Pictometry

LIDAR imagery
Thermal imagery
Digital aerial photographs
(oblique)

9/28/2001 EarthData LIDAR imagery
Thermal imagery

9/29/2001 EarthData Digital aerial photographs
(vertical)
LIDAR imagery
Thermal imagery

Poor data due to turbulence

9/30/2001 EarthData Digital aerial photographs
(vertical)
LIDAR imagery
Thermal imagery

October
2001

EarthData Digital aerial photographs
(vertical)
LIDAR imagery
FLIR imagery

EarthData continues acquiring data. FLIR
system is used from 10/17/2002 to
10/22/2002.
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 

The historical overview in Section 2 outlines the remote sensing data collected
for emergency operations following the World Trade Center attack.  This section
of the report provides details of the datasets that were acquired (see also Table
2-1), including: aerial photographs and multispectral imagery, thermal, LIDAR,
and hyperspectral systems.  In each case, the equipment specification is
considered. Its usefulness in rescue, response and recovery is also discussed,
based upon a series of conversations with key individuals involved in emergency
operations (sources are noted in parenthesis, and their full name and affiliation
is listed in the Acknowledgments section of this report), together with published
reports and articles (see, for example, Geoplace.com, 2001a; New York State
Senate, 2001).  The evaluation goes on to consider problems that emerged, and
potential data sources and uses that could prove critical in future emergency
situations.  Finally, methods of geospatial cross-referencing are described, which
combine remote sensing and GIS analysis in supporting emergency operations.

3.1  Aerial Photography

Aerial photographs are images of the earth’s surface, taken from an airplane or
helicopter.  There are two main types of air photographs discussed below –
vertical, which look straight down, and oblique shots that are taken from one
side.  The amount of detail shown by the photography depends on the height of
the aircraft, the type of digital or film-based camera, and whether the shot is
taken in color or black and white.

As shown by the schedule in Table 2-1, several organizations were involved
with the acquisition of aerial photographic coverage for the World Trade Center
site. Initially, Keystone Aerial Surveys acquired black and white vertical images
for the NY State Emergency Management Office (SEMO), and the photography
group of the Fire Department of New York (FDNY) took digital photographs of
Ground Zero from police helicopters, on an intermittent basis.  However, once
remote sensing data was formally requested to aid response and recovery, the
organization EarthData collected high-resolution vertical digital photographs
on a regular basis. Later on during the recovery operations, supplementary
vertical scenes were obtained by the National Oceanic and Atmospheric
Administration (NOAA), and oblique shots by Pictometry International.

3.1.1  Specification

Vertical aerial photography was initially flown by Keystone on 13th September,
by a Cessna 320  aircraft carrying a Leica RC30 camera. EarthData then acquired
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coverage (EarthData, 2001) on 19 occasions between 15th September and 22nd
October 2002, using a Navajo Chieftain aircraft equipped with a Kodak Megaplus
Model 16.8i panchromatic digital camera.  Flights were timed to coincide with
midday, in order to minimize shadowing effects. The output is a 256 grayscale
image.  During all flights, precise changes in the position and orientation of the
camera were recorded using an Applanix POS/DG Inertia Measurement Unit
(IMU), and coordinates of a known control point measured using a GPS receiver.
Since the flying height ranged from 3000-5000 ft, the imagery has a spatial
resolution of 0.3-0.5ft.  Image rectification and processing procedures (see
EarthData, 2001) were completed on these raw scenes, and data released for
general circulation 12 hours later.

Additional vertical scenes were acquired by NOAA on five occasions between
23rd September and 15th October 2002 (NOAA, 2001).  The Cessna Citation jet
was flown at 3,300 ft with a film-based Leica/LH systems RC30 camera. In this
instance, the output is a detailed color photograph.

The potential value of high-resolution oblique photographs was demonstrated
by the single dataset acquired by Pictometry International, on 27th September
2002.  However, limited information is available concerning this mission.
Specifications for the numerous digital photographs taken on a daily basis by
the FDNY are unknown.  The uses and usefulness of these images are described
in the next subsection.

3.1.2 Uses and Usefulness

The value of remote sensing coverage for Ground Zero was immediately
apparent from the digital photographs taken from the police helicopter.
Although these were merely photographs taken out of a window, they helped
fire chiefs assess damage, and accessibility (A. Leidner) and locate hazards such
as hanging debris and unstable ground.

The high-resolution digital coverage collected by EarthData (see Figure 3-1) was
the most widely used source of aerial data.  In particular, orthophotographs
proved to be extremely valuable.  Orthophotographs are processed so that they
have the same properties as a map (i.e., distances and orientations are correct),
but look like a photograph.  For non-specialists, they offered an aerial view that
was easy to interpret. Initial optical coverage enabled rescue teams to orient
themselves, and gave a clear indication of the magnitude of damage and extent
of debris on the site (B. Oswald). Overlaid with Computer Aided design (CAD)
models of the twin towers floor plan, they enabled workers to pin point specific
locations of infrastructure, such as stairwells and elevator shafts (J. Tu).  This
composite of data was also used for logistical planning, when it was necessary
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


Figure 3.1. High-resolution vertical aerial photograph acquired by EarthData,
showing Ground Zero on the 15th September 2001.

to identify a safe and stable position within the Ground Zero site, for cranes
lifting and clearing debris.  Identifying potentially dangerous areas on the debris
pile around voids and depressions also helped, by reducing the risk of injury to
recovery teams (A. Leidner).  The photographs aided orientation for members
of the emergency task force who were unfamiliar with the Lower Manhattan
area. Presented alongside optical data of the World Trade Center prior to its
collapse, the orthophotographs were widely distributed and used extensively
for comparative purposes.
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In view of these factors, it is hardly surprising that orthophotographs were the
most requested product at the Javits GIS center (D. Shreve).  In subsequent stages
of the recovery, these optical images were used monitor the shrinking ‘red zone’
(zone of restricted access), catalogue evidence, coordinate building inspections
and show damage states for buildings and utilities.

The orthophotographs were widely employed as a base map, on which data
collected for ground zero was overlaid.  For firefighters, thermal and optical
data was a useful combination.  The two-dimensional 75 ft square, numbered,
transparent grid established by the FDNY for logistical purposes, was also
superimposed on the images.  This provided a common reference system for
tracking objects found amongst the debris. It also enabled recovery workers to
discuss activities and locations on the site.  This was particularly important,
since the GPS devices were not working due to interference.  One can imagine a
conversation between tired firefighters, trying to discuss the location associated
with a clean up task.  Thousands of conversations just like these were significantly
shortened through using this data.

The oblique photography captured several weeks after the attacks by Pictometry,
provided a valuable indication of damage to buildings surrounding Ground
Zero.  Like the initial photographs taken from helicopters by the fire department,
they showed the sides of buildings, the extent of debris on rooftops and the
level of damage sustained by facades.  These images may have enabled fire
fighters to assess the hazards associated with hanging debris. GIS managers
who examined this trial dataset identified it as a potentially useful tool for
emergency situations.

3.1.3 Problems

Although aerial photography was widely used at Ground Zero, there are a
number of problems, which if resolved, could improve its role in emergency
operations.  First, it is important to note that optical coverage is of limited use
when the scene is obscured by smoke. This was a major limitation of the earliest
vertical coverage acquired by Keystone on 13th September. If fires are burning
during the early phases of a disaster, this is not the optimal source of data.
Shadowing is also a problem associated with aerial coverage of dense urban
environments with a concentration of high-rise buildings.  Unless data is acquired
at midday, when the sun is at nadir, shadows can impair visual interpretation,
by obscuring areas of interest.

Second, digital images were collected by EarthData in black and white.  However,
color datasets are generally easier for non-specialists to interpret, since features
are distinguished by color, in addition to shape and contrast. Ideally, color
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photographs, like those acquired later by NOAA, should have been available
immediately after the event.  The spatial resolution of these scenes is also an
issue. The Phoenix Photography and Imagery Group of the NYFD identified a
pixel size of ~3 inches as ideal for the identification of individual girders (New
York State Office for Technology, 2002).

Third, the usefulness of orthophotographs to response teams was limited by
the 12 hour lag between data acquisition and release, during which time
conditions at Ground Zero had changed.  Although this was the stipulated
requirement on which EarthData acted, turnaround time was identified by the
FDNY as a major obstacle to use (D. Schiavo, C. Chang, D. Shreve).  Finally,
oblique photographs are not suitable for GIS programs, thereby limiting their
usefulness for developing map-based products.

3.1.4 Potential Uses

Learning from World Trade Center events, color rather than grayscale aerial
photography would greatly assist response and recovery operations, enabling
crews to distinguish features by their color.  In Figure 3-2, on the left hand side,
it is possible to visualize the progress of covering the surrounding buildings
with protective material. It is difficult to discern this information from the same
resolution imagery in the black and white version on the right. Several of the
cranes and cars in the color image are difficult to see in the black and white
image. Furthermore, it is not possible to discern in black and white that the
windows are boarded up on the first floor.  Perhaps most importantly, the color
provides a tie between the image and the world around the person viewing the
image on site, allowing them to quickly orient themselves.

Feedback from response crews further suggests that oblique coverage, such as
that acquired by Pictometry, could prove useful if acquired immediately after
the event.  This perspective could also aid 3D visualization.  Using architectural
rendering software, oblique shots could be draped on high resolution DEMs as
‘wallpaper,’ providing a side view of building facades that is absent from the
orthophotography.

Image processing techniques could generate additional information from high-
resolution aerial photographs.  Enhancing the visual representation could reduce
shading effects.  Procedures such as edge enhancement would be useful for
mapping the locations of girders.  Multi-temporal change detection could be
used to monitor clean-up operations in an automated manner.  Density splicing
and classification techniques could also be used to categorize debris for planning
purposes. Once images are brought into image processing software packages,
they become much easier to interpret.
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3.2 Multispectral Satellite Imagery

Satellite imagery of Ground Zero was acquired by the SPOT and IKONOS earth
orbiting systems, several days before the high-resolution aerial photographic
coverage.  Whereas the aerial photographs from EarthData (see Section 3.1) are
simple black and white or color scenes, these satellite sensors collect digital
multispectral imagery, which spans a wider range of the electromagnetic (light)
spectrum.  Data is acquired in a series of ‘bands’, which are sensitive to blue,
green and red reflectance, and may also extend beyond visible wavelengths,
into infrared regions of the spectrum.

3.2.1 Specification

At 11:55 am of September 11th 2002, only three hours after the terrorist attacks,
SPOT 4 acquired a multispectral scene of Ground Zero.  Operated by the French
organization SPOT Image (SPOT, 2002), this system has been sending back
images of the earth since its launch on 3/24/1998.  The satellite has two sensors:






 

Figure 3.2.  High-resolution aerial photography acquired by NOAA, showing
Ground Zero on the 23rd September 2001.
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a multispectral device with a spatial resolution of 20 meters (m) and a finer
resolution panchromatic device that can record objects of 10m.  Four
multispectral bands occupy blue (0.5-0.59 µm), green (0.61-0.68 µm), red (0.79-
0.89 µm) and infrared (1.58-1.75 µm) wavelengths. The panchromatic band
occupies a single range in the visible (0.61-0.68 µm) region of the spectrum.

The IKONOS system, operated by Space Imaging (Space Imaging, 2002), also
includes multispectral and panchromatic devices.  Multispectral bands include
blue (0.45-0.52 µm), green (0.52-0.6 µm), red (0.63-0.69 µm) and near infrared
(0.76-0.90 µm) bands.  The panchromatic spans the visible part of the spectrum
(0.45-0.9 µm).  Compared with SPOT 4, this newer system, launched on
9/24/1999, displays the Earth’s surface in much greater detail.  Acquired on
12th September – one day after the terrorist attacks, IKONOS coverage of the
World Trade Center has a resolution of 4 m, while the panchromatic band shows
details of ~1 m.

3.2.2 Uses and Usefulness

Following the World Trade Center Attack, multispectral IKONOS and SPOT
data were quickly made available on the Internet.  Thus, it was employed in
emergency efforts several days before the aerial photography.  As shown in
Figure 3-3, IKONOS imagery gave the general public a view of Ground Zero,
with the extent of damage published on the front page of newspapers around
the world. For non-specialists, the realistic color format is easy to understand
and the 1 m spatial resolution provides a detailed representation of the ground
surface below.  For visualization purposes, IKONOS imagery was used as a
base-map, and presented as a before/after sequence. These images were very
useful for visualizing the area as it once stood, as it was difficult for the relief
workers from out of town to discern on site.

Although useful as an overview of Ground Zero in the wider context of lower
Manhattan, the SPOT 4 data in Figure 3-4 played a limited role in emergency
operations, due to poor spatial resolution (S. Ahearn).

3.2.3 Problems

Many of the subsequent IKONOS images were acquired off-nadir.  With off-
nadir acquisition, the sensor is tilted away from directly below the satellite to
acquire a specific region.  Due to the offset sensor position relative to the study
site, features of interest at Ground Zero were obscured by other tall buildings in
lower Manhattan.

In addition, visibility was limited in the IKONOS images by smoke obscuring
the ground surface immediately after the terrorist attacks.  This is a limitation
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of visible sensors, and points towards the value of sensors operating in other
regions of the electromagnetic spectrum, such as Synthetic Aperture Radar (SAR).
The revisit frequency is also an issue for earth orbiting satellites such as these.
For 1 m data captured near nadir, this is 2.9 days.  In the case of SPOT, its
usefulness was severely limited by the coarse spatial resolution, where only
objects larger than 10 m could be distinguished.




Figure 3.3.  Multispectral IKONOS satellite coverage of Ground Zero, acquired on
the 15th September 2001.
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3.2.4 Potential Uses

In future disasters, high-resolution data from sensors such as IKONOS and
Quickbird (which was launched in October 2001) will provide a useful alternative
to aerial photography, particularly when data acquisition by aircraft and
helicopters is prevented due to air traffic bans.  For widespread disasters, this
data would be useful for the same operations as the aerial photography listed
above. The extensive coverage provided by satellite data is useful for monitoring
events where damage is sustained at a regional rather than localized scale,
especially when change detection algorithms are used. Infrared data can be
particularly useful for monitoring heat and detecting damage. For analytical
purposes, multispectral imagery has the potential to yield additional
information, compared with grayscale or color aerial photography.  Classification
is an image processing technique that assigns features to groups or ‘classes’
depending on their spectral characteristics in different bands of the
electromagnetic spectrum.  For example, classification of high-resolution imagery
could distinguish between ground surface materials and debris.



Figure 3.4.  Infrared SPOT image, acquired three hours after the
World Trade Center Attack on the 11th September 2001.
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3.3 LIDAR Altimetry

Light detection and ranging instruments collect information about the elevation
of the earth’s surface, by measuring the amount of time taken for beams of light
to strike the ground and return to the sensor.  Devices are generally mounted on
an aircraft platform, and a high density of point samples recorded along a
designated path or swath. LIDAR data is usually interpolated onto a raster grid
or a Triangulated Irregular Network (TIN) is used to produce terrain models,
which present topographic variations as a basic 3D map.  During the early stages
of emergency operations, EarthData acquired LIDAR coverage of Ground Zero
on a daily basis (see Table 2-1).  Toward the end of the program, NOAA acquired
additional scenes and the frequency of collection by EarthData was reduced to
a three to four day interval.

3.3.1 Specification

EarthData first acquired LIDAR coverage on 15th September, using an AeroScan
multiple return sensor carried aboard a Navajo Chieftain aircraft (see EarthData,
2001; also Section 3.1).  During all flights, precise changes in the position and
orientation of the LIDAR unit were recorded using an Applanix POS/DG IMU,
and coordinates of a known control point measured using a GPS receiver.
Although the measurement frequency varies with the elevation and speed of
the aircraft, spatial resolution was in the range 6-15 ft (EarthData, 2001).  In this
case, spatial resolution refers to the average distance between elevation readings,
rather than the pixel size. Following image registration and processing, the first
LIDAR surface models were available to response teams on 17th September.
Difference images (created by subtracting two images from different dates) were
perceived to have an accuracy of +/- 9 cm (S. Ahearn).

NOAA acquired five additional scenes between 23rd September and 15th
October (NOAA, 2001), using an Optech LIDAR unit carried aboard a Cessna
Citation jet.  Flown at an altitude of 5,000-6,000 feet, the resolution of these models
is coarser than the EarthData scenes.

3.3.2 Uses and Usefulness

The LIDAR imagery flown by EarthData (Figure 3-5) was particularly useful
during the early stages of emergency operations when, on 17th September, it
was used to visualize Ground Zero through the smoke (S. Ahearn).  The basic
3D models were employed by fire chiefs as a planning and visualization tool.
They would use the resulting maps to discuss events as they correlated with the
debris (S. Ahearn).  They were also widely used by response teams and the
Federal Emergency Management Acency (FEMA), for assessing the extent of
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damage, together with the shape, volume and depth of depressions in the debris
pile.  Later on during emergency operations, LIDAR difference images were
used to track debris removal, and to explore subsidence in the debris pile (D.
Kaplan, S. Ahearn), which if significant could have posed a considerable risk to
emergency crews.

In terms of map-products, overlaying of the 3D LIDAR model with a map of
hazardous materials and fuel sources was particularly useful for ascertaining
what was happening underneath the ground. (A. Leidner).  The correlation
between voids and the position of fuel and freon tanks provided a focus for fire
fighters (N. Visconti), possibly preventing explosions that would have released
toxic gases.




Figure 3.5.  Map of LIDAR 3D terrain model for Ground Zero, acquired by
EarthData on the 19th September.
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3.3.3 Problems

The value of LIDAR data for visualizing ground surface features in the red zone
and distinguishing between changes due to debris removal and subsidence could
be improved by increasing the point sampling density.  Its usefulness was also
limited by the processing time between acquisition and delivery.  Although
imagery was delivered the following morning, the debris pile had often changed
during this interim period.  For similar reasons, response and recovery teams
continued to rely on the real time monitoring of subsidence levels offered by an
onsite laser altimeter (D. Kehrlein).  Data processing issues may have affected
the accuracy of LIDAR coverage.  The highest elevations appeared to change,
suggesting that interpolation algorithms were used to derive a trend rather than
a precise elevation surface  (C. Rigeway).

3.3.4 Potential Uses

When LIDAR collects elevation readings, often the intensity of the response is
also captured. As with optical data or radar data, intensity changes with material.
This data can be mapped, and the result resembles a black and white image,
with metal objects standing out as the most reflective.  The sensor used by
EarthData was apparently unable to capture intensity, and many individuals
working with the LIDAR coverage were unfamiliar with the concept of this
dataset.  During the early stages of events, when Ground Zero was obscured by
smoke, intensity readings captured by the LIDAR sensor may have provided a
useful indication of damage levels. However, in view of the general lack of
familiarity with this dataset, remote sensing specialists would require training
in the processing and interpretation.

Additional analysis could be undertaken and new composite images produced
using LIDAR coverage.  For example, a difference image could be created, by
subtracting a temporal sequence of the 3D terrain models.  This would provide
a visual indication of the changing shape (see the illustrative example in Figure
3-10), and a numerical value of volumetric changes in the debris pile. The fusion
of orthophotography and thermal imagery to this composite would clarify the
relationship between depressions in the debris, hotspots and hazardous objects.
Draping thermal difference maps with the LIDAR imagery (see, for example,
Figure 3-9) could provide a more robust indication of successful fire fighting
strategies and cool-down rates.

3.4 Thermal Imagery

In simple terms, thermal imagery records the temperature of a designated
surface, in this instance the debris pile at Ground Zero.  The ‘temperature’ is
actually a calibrated measure of emitance in the thermal region of the
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electromagnetic spectrum, which falls just above the visible wavelengths that
were studied using multispectral sensors (see Section 3.2).  For the World Trade
Center, data was collected using both airborne and satellite sensors.  The SPOT
4 coverage was acquired soon after the terrorist attacks, with airborne imagery
from EarthData Aviation and AVIRIS delayed until the 16th September, due to
the ban on air traffic.

3.4.1 Specification

During the initial phase of response and recovery, flights by EarthData
(EarthData 2001) provided thermal imagery every other day. Commencing on
16th September, data were acquired using a tripod mounted Raytheon Nightsight
Palm IR 250 thermal camera, carried aboard a Navajo Chieftain aircraft.  Flights
were undertaken just after daybreak, to minimize the effects of solar heating on
the scene.  The resulting thermal data (see Figure 3-6) has a spatial resolution of
2ft and was captured on a video format.  Individual scenes were obtained by
"frame grabbing".  This is a process of pausing the video, creating an image
from the paused video that is transferable to image processing software, and
registering the resulting still.  Two stills were often required.  It is important to
note that output shows the relative (hot versus cold), rather than absolute (in
terms of degrees Kelvin) magnitude of temperatures on the ground surface.

From October 17th to October 22nd, EarthData thermal imagery was also
obtained using a FLIR ThermaCAM SC2000 radiometric camera.  This logs
individual frames on a PCMCIA card, rather than recording continuously on
videotape.  The resulting data is in 8-bit (256 level) format. Since neither of these
thermal data sources were GPS referenced, both required registration relative
to a baseline orthophotograph.

The first round of thermal data acquisition by JPL/NASA (Clark et al., 2001)
coincided with that of EarthData.  In this instance, thermal imagery was obtained
as part of the hyperspectral Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) coverage, which is described fully in Section 3.5.  The output (see, for
example, Figure 3-7) is absolute temperature values in degrees Kelvin.

The SPOT 4 satellite coverage obtained on 12th September by SPOT Image (SPOT,
2002) precedes both the EarthData and AVIRIS datasets.  Recording emitance
between wavelengths of 1.58-1.75 µm, this data has a spatial resolution of 15 m.
Further details of the platform and sensor are provided in Section 3.2.1.

3.4.2 Uses and Usefulness

The most frequently used thermal infrared data was flown by EarthData (see
Figure 3-6).  As with all of the data collected by this company, imagery was
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





Figure 3.6. Thermal image of Ground Zero acquired by EarthData on the 7th October
2001, using a Raytheon airborne sensor.
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widely distributed and well publicized.  In contrast, AVIRIS imagery was not
circulated among the GIS units. Consequently, a key source of absolute temperate
values was excluded from the mapping process. SPOT 4 data proved to be of
limited value due to the coarse spatial resolution.

With fires raging at Ground Zero, the thermal data was used in a number of
ways.  Overlaid with orthophotographs, it was used for planning fire-fighting
strategies, which needed to consider the location of hot spots in the pile.  It was
also used to evaluate firefighting strategies (B. Oswald).  For example, where



Figure 3.7. AVIRIS thermal image showing hotspots at Ground Zero on the 16th
September 2001 (Clark et al., 2001).
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various chemicals were being used to tackle hotspots, chiefs assessed the success
of fire-fighting techniques by visually noting the difference between a time series
of the images (B. Oswald).  However, there is no indication that this subtraction
was performed digitally, or numerically.

Integrating thermal and attribute data also assisted operations.  Superimposing
the thermal data on GIS locations of transformers, and underground
infrastructure highlighted potential hazards to the response teams (D. Kaplan).
For fire fighters, building plans and maps showing hazardous materials and
fuel sources provided a focal point for wetting down the areas around fuel and
freon tanks (A. Leidner).  From visual examination, firefighters also noted a
correlation between hot spots and depressions in the terrain model (N. Visconti).
They also attempted to track occurrences of ‘flash-over,’ when hot areas jump
or migrate from one location to the other (D. Kehrlein).

3.4.3  Problems

Considerable debate surrounds the use of this data in emergency response.  There
is no question that the data were used extensively.  However, a number of
significant problems were identified.  Timeliness was a key concern, since the
distribution of heat was changing constantly.  The EarthData processing routine
had a turnaround time of 4-6 hours.

Response crews called the usefulness of EarthData thermal imagery into
question, since heat and fire locations were not always correlated. Fire fighters
used the thermal scenes for reference and crosschecking, but mainly relied on
onsite sensors (D. Kehrlein).  Offset between remote sensing imagery and
observations appear to result from the method of data acquisition – videotaping
and screen capture, coupled with inaccurate image registration relative to the
orthophotographs.  It is not clear that this actually was a problem, but it is clear
that it could not be ruled out. Some observed changes were most likely linked
to actual heat migration because of the fire fighting efforts and the high
conductivity of the material.  However, there was also speculation that the
movement of hot spots was due to misregistration.  When lives are at stake, the
accurate positioning of hotspots is of pivotal importance.  The value of thermal
data was also questioned, because the EarthData imagery failed to display
absolute temperatures.  Ideally, fire fighters require a scale of values in degrees
Fahrenheit, rather than a relative scale of 8-bit values.

Although correctly scaled, the AVIRIS data were not delivered in a GIS format
to people at ground zero. Indeed, many of the top-level GIS responders were
unaware that AVIRIS was collected.  The SPOT imagery was widely distributed,
but it was not delivered in a georeferenced format and therefore was not easily
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read into a GIS program.  Although this was the infrared data delivered, there
are no examples of maps that overlaid infrastructure onto this data, perhaps
due to the resolution.

3.4.4  Potential Uses

In the extensive gallery of maps produced at Hunter College, there is no analysis
of the hot spots.  It was assumed from looking at the images that the deepest
holes were the hottest (N. Visconti).  Through data integration, plotting the
thermal infrared response by the depth is a simple task, which will establish
whether or not this is the case.  Correctly registered Raytheon, FLIR or AVIRIS
thermal data could be draped onto the LIDAR coverage to assess the relationship
between the depth and the hotspots and through multi-temporal analysis
investigate other issues such as cool-down rates.

The AVIRIS thermal scenes could be brought into a GIS system, and integrated
with optical, LIDAR and CAD data.  A composite map showing hotspots,
depressions in the pile, the locations of fuel and freon tanks, hazardous materials,
and other features of specific concern, could provide a holistic view of the hazards
faced by rescue teams and a focus for firefighting efforts.

3.5 Hyperspectral Data

In response to requests by the EPA through the US Geological Survey (USGS),
the AVIRIS hyperspectral instrument was deployed by JPL/NASA soon after
the terrorist attacks.  The term ‘hyperspectral’ (as opposed to multispectral, as
described in Section 3.2) reflects the large number of bands over which data is
acquired. In the case of AVIRIS, radiance measurements span visible and infrared
regions of the electromagnetic spectrum.  The spectral characteristics of each
pixel are recorded across this entire range of wavelengths.

3.5.1 Specification

Commencing on the 16th September, AVIRIS coverage of Ground Zero was
acquired on five occasions (see Clark et al., 2001).  The hyperspectral sensor was
deployed aboard a De Havilland Twin Otter aircraft at altitudes of 6500-12500
ft, resulting in a spatial resolution of 2-4 m.  The spectral resolution is also high,
with 224 bands spanning a range of 0.37-2.5 µm.  Despite the wide choice of
bands, for the World Trade Center, studies focused on the thermal infrared region
of the spectrum (see Section 3.4) and the reflectance characteristics of atmospheric
particulate matter, with an emphasis on asbestos.  After acquisition, data were
calibrated and georeferenced at JPL. Imaging Spectroscopy Groups at the USGS
applied atmospheric and ground calibrations to generate surface reflectance
and absolute temperatures.
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3.5.2 Uses and Usefulness

Hyperspectral AVIRIS data were used by scientists at the USGS to analyze
contents of the smoke plume emanating from Ground Zero.  It was also used to
track particulate asbestos, which posed a considerable risk to response and
recovery crews.  Results from these studies were published several weeks after
the terrorist attacks (Clark et al., 2001).

3.5.3 Problems

Although the first AVIRIS hyperspectral dataset was rapidly processed and
released on 18th September, this information, which included useful maps of
hotspots, was not generally available. The value of results showing atmospheric
pollutants was limited by considerable time delays.  These compositional results
were not released until the 27th September, by which time the risk posed to
response crews by airborne contaminants had abated.  Many confided that it
was very difficult to obtain any environmental information.

3.5.4 Potential Uses

During the early stages of emergency operations, many fire fighters experienced
respiratory problems (D. Kehrlein).  Clearly, AVIRIS data has the potential to
provide key information about dangerous airborne contaminants.  However,
the turnaround time between data acquisition and release requires significant
improvement.

Multi-temporal sequences of thermal data could be used to monitor changing
hotspots and generate cool down rates, by mapping shifts in location and
quantifying their diminishing extent. With proper training algorithms in place,
this sensor could be absolutely critical in future events. This may prove
particularly useful for tracking airborne contaminates which are far more deadly
than asbestos.

3.6 SAR Imagery

RADARSAT1 is a commercial satellite (Canadian Space Agency, 2002) that
acquires high-resolution imagery using synthetic aperture radar (SAR) sensors.
Rather than passive devices, such as the multispectral and hyperspectral sensors
described previously, these are active sensors, which emit and receive low
frequency signals in the microwave region of the electromagnetic spectrum.
SAR sensors collect information about the material of the ground surface based
upon texture. It is particularly sensitive to manmade features, which are often
metallic or contain right angles (referred to as corner reflectors).  This data has
been used extensively in the military. Interpreting this data takes practice, but
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there are many advantages to this data source, including the ability to see through
smoke or at night.  Where multiple images are captured, they can be used to
generate terrain models. SAR can also be collected by aircraft, which produces
higher resolution imagery.




(Image courtesy of the Canadian Space Agency)

Figure 3.8.  RADARSAT1 SAR imagery of Ground Zero, acquired on the 13th
September 2001 using the sensor operating in ‘Standard’ mode.
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3.6.1  Specification

RADARSAT coverage of the World Trade Center was acquired on 13th
September.  The sensor operates in the radio wave regions of the spectrum at
5.6 cm, emitting and receiving a beam from a 15 m x 1.5 m antenna.  The sensor
may be set to ‘fine’ imagining mode, which results in a spatial resolution of 8 m.
However, in this instance, the ‘standard’ mode produced imagery (see Figure
3-8) with a resolution of 30 m.

3.6.2  Uses and Usefulness

Although timely, little information was yielded by RADARSAT data, due to the
limited spatial scale of Standard mode imagery compared with the localized
scale of damage.  Although the Manhattan area is clearly depicted (Figure 3-8),
and a change in intensity is apparent, few features can be distinguished at
Ground Zero.

3.6.3  Problems

In general terms, SAR technology is less widely used in remote sensing and GIS
communities than optical data.  Consequently, there were few users with the
necessary expertise to incorporate this data into response and recovery efforts.
Its usefulness was also fundamentally limited by the poor spatial resolution
and the complexity of the built environment around Ground Zero.

3.6.4  Potential Uses

The change in intensity between before and after scenes acquired by RADARSAT
suggests that SAR data may offer important insights into damage sustained.
Active sensors, which operate at these longer wavelengths, are particularly
versatile since they can be deployed at night, see through heavy smoke or clouds
and operate during adverse weather conditions.

High-resolution imagery acquired by airborne sensors, or RADARSAT1 in ‘fine’
mode, would be particularly useful in regional emergency situations.  It is also
valuable for imaging manmade objects, since it is sensitive to ‘corner reflectors’,
or 90-degree edges associated with buildings, and a much higher return is
associated with metallic objects.  However, SAR data is arguably more difficult
to interpret than optical imagery.  For SAR to play a more significant role in
emergency operations, trained remote sensing experts would be required to
analyze and evaluate results.
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3.7  Geospatial Cross-Referencing and GIS

GIS technology provided the platform for integrating a diverse range of spatial
datasets that were acquired during emergency operations at the World Trade
Center site.  The following section describes advanced methods of geospatial
cross-referencing using remote sensing imagery, vector and raster datasets.  The
New York City GIS database was a particularly useful resource, providing both
high-resolution orthophotographs of the World Trade Center prior to the terrorist
attacks, and key attribute data.  For illustrative purposes, examples of the
resulting composite scenes for Ground Zero are described. Issues raised by end
users are also discussed, together with ways of improving procedures for future
events.

3.7.1 Methods

Once pre-processed and geo-referenced, remotely sensed images were imported
into an Environmental Systems Research Institute (ESRI) environment, often
using ArcView.  These images would then be combined with GIS data and maps
would be produced. In addition to a number of standardized map products
that were produced on a daily basis, individuals requested customized maps at
the Emergency Mapping and Data Center (EMDC).  Initially, requests were
addressed on an ad hoc basis.  However, a system was later put in place, whereby
requests were logged at a formal ‘Map Request Desk.’ The remote sensing data
was subsequently posted on-line at the NY Office of Technology (OFT) and Earth
Resources Observation System (EROS) data centers.  Initially, this was limited
to processed imagery and GIS files.  Later, a summary of the flight history, data
specifications and remote sensing devices was added.

3.7.2 Uses and Usefulness

In many cases, the process of integration significantly enhanced the information
content of the datasets described in Sections 3.1 - 3.4.  In simple terms, integration
involves draping and overlaying series to produce composite scenes.  A number
of datasets were superimposed with base-maps, such as orthophotographs from
EarthData and the New York City GIS database, oblique images, 3D LIDAR
terrain models.  These included (J. Hall, J. Tu):

• Response and recovery: thermal images showing hot spots, maps of
underground fuel and freon tanks, maps showing command posts, facilities
and food stations

• Rescue support: CAD floor plans showing the location of elevator shafts
and pillars
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• Deep infrastructure: Maps of subsurface structures and hot spots

• Inventory: location of items/evidence removed from the debris pile

• General orientation: street maps, maps of buildings and addresses, location
of restricted zones

• Transport status: maps showing the closure status of roads, subways, bridges
and tunnels, and routing information

• Utility outage: maps showing electricity, telephone, gas, steam and water
outages

• Services: maps showing hospitals, mortuaries, vacant land

• Building status: maps of damage status and government office closures.

At the map request desk, a standardized catalogue of maps proved particularly
useful, since it enabled non-specialists to select the most appropriate product.
The widespread use of these standard maps (2,000 requests were made and
10,000 maps produced during September and October), visits to the EMDC by
Chief Pfeiffer of the FDNY, and use of maps by Mayor Giuliani, highlights the
success of this effort.

3.7.3 Problems

Lack of familiarity with geospatial data was one of the greatest challenges faced
by GIS and remote sensing experts.  Since most firefighters and response
personnel were non-specialists, it was important to present the information in a
format that was easy to understand and interpret.  There was a steep learning
curve, and requests were made for on-site educators.

The turnaround time between data acquisition and map production was on the
order of 12 hours.  Although this improved to 4-6 hours for FLIR imagery, to
maximize the usefulness of remote sensing thermal data for firefighting efforts,
a much shorter lag (on the order of three hours) is preferred.  Until rapid
registration, correction and automated image processing techniques become
available, achieving this level of timeliness would incur costs in terms of accuracy.
However, given the comments concerning misregistration of thermal data and
steps taken by the EMDC to ensure that all map products adhered to strict
standards, reduced accuracy may not be acceptable.

From a technical perspective, the use of GIS programs for image processing
was problematic. ER Mapper, ERDAS Imagine and ENVI were not widely used.
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It is difficult to extract values from the scenes, since data was manipulated as
‘images’ rather than converted to ‘grids.’  Poor performance of interpolation
algorithms within MapInfo and ArcView also resulted in a distorted view of the
LIDAR coverage, yielding different values for the maximum height of buildings
and depth of depressions in the debris pile.

3.7.4 Potential Uses and Improvements

From a logistical viewpoint, a number of improvements can be made that impact
the usefulness of remote sensing data.  Since timeliness is a key concern in any
emergency situation, data acquisition should be streamlined.  First, key sources
of remote sensing data should be identified.  In preparation for future disasters,
the necessary contracts and clearances for acquiring airborne imagery need to
be established.  Pre-processing issues delaying data release should also be
addressed.  An automated method of correcting and registering images to a
predetermined coordinate system would significantly improve the turnaround
time (B. Logan).

Spatial data will be used more effectively if emergency management personnel
are familiar with the tools and their capabilities.  For map requests, a
comprehensive catalogue of useful images and composite scenes is invaluable.
However improved data visualization, such as virtual representations using
VRML or other 3D modeling software, would allow emergency personnel to
interactively explore the data for rapid planning and decision making purposes.
Mobile map production units would aid the distribution of data, while on-site
technical consultants are needed to assist non-specialists with interpretation.
This would provide a feedback mechanism between mapping operations and
end users, which would quickly identify issues that could limit usefulness, such
as data visualization or turn around time.

Clearly, a wide range of very useful composite images was produced at the
EMDC, FEMA and Urban Search and Rescue GIS and mapping centers.
However, additional composite scenes may have further assisted response and
recovery teams.  The following examples generated by ImageCat reinforce the
power of this geospatial information as an aid to disaster response.

(a) LIDAR 3D model overlaid with orthophotography and thermal data

As shown by the sequence of models in Figure 3-9, this composite scene provides
a three dimensional representation of conditions at Ground Zero.  Combining
the terrain model and orthophotography aids general orientation within the
site.  The thermal data, although relative values, provides an indication of where
the hot spots lie in relation to buildings and debris piles, as represented in three



32










Figure 3.9.  Visualization of Ground Zero, with orthophotography and thermal data
draped over a LIDAR 3D terrain model.
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dimensions.  The data represented here were all collected on September 17th by
EarthData. Although there are two frames represented here, this is part of a
Virtual Reality Modeling Language (VRML) file, which can be uploaded onto
the internet and visualized with Internet Explorer.  The end user then has the
ability to rotate and position the data so that they can see the hot spots from any
location. The advanced user can then manipulate the model to take the guess
work out of assessing the location of the hot spots. Rescue workers could refer
to the location of debris piles, visible objects in the debris, and one’s own
perspective view to pinpoint exactly what should be hot, and this file could be
accessed from many locations without difficulty.

This model could be improved further with a higher LIDAR point sampling
density and color imagery.  Absolute thermal readings would make the model
much more meaningful, first for assessing the level of hazard, and later
establishing the degree of success in extinguishing the fire.  Although CAD
models showing floor plans and the location of fuel and freon tanks were
unavailable for the present evaluation, the addition of building footprints, streets,
and labels would enhance the information content.  Additionally, smoke is still
present in the imagery.

(b) Temporal pairing of 3D LIDAR terrain models, showing elevation changes
within the debris pile.

Remotely monitoring changes in topographic characteristics of the debris pile
could provide an early warning of emerging hazards due to subsidence.  In
Figure 3-10, the zones highlighted in red correspond with a decrease of 5-10 ft
between the LIDAR elevation datasets from September 17th and September 19th.
The largest of these areas covers 1,500 sq ft.

To perform these calculations, elevations falling within a 5-foot grid mesh were
averaged.  Cells without values were populated by taking the value of the nearest
populated cell.  After subtracting the grids, the data were grouped, based upon
the range of the difference. Areas with less than five contiguous cells were
eliminated.  This minimized the effect of arbitrary differences between the
temporal pairing of LIDAR grids, which arise from creating a surface from point
data. The results were converted to a vector file. The method of image analysis
differs from a similar manipulation of the 3D terrain models undertaken by
Sean Ahearn at Hunter College, inasmuch that it focuses on regional differences
between the scenes that might be consistent with subsidence.  The aim here is to
distinguish persistent regional differences, whereas a subtraction of interpolated
data would capture all differences.
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(c) Temperature data and thermal subtraction showing cool down rates at
Ground Zero

Firefighting teams identified the lack of absolute temperature data as a significant
limitation of the thermal datasets initially available to response teams.  The
sequence of temperature readings, shown in the top row of Figure 3-11 were
acquired by EarthData between 18th-22nd October, using the FLIR thermal




Figure 3.10.  Changes in elevation on the debris pile at Ground Zero recorded using
3D LIDAR terrain models for the 17th September and the 19th September 2001.
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imagining device. These are overlaid with the aerial orthophotography from
October 7th.  Notably, the thermal data are calibrated to record temperature in
degrees Fahrenheit, thereby addressing the limitations of relative magnitudes
acquired using the Raytheon sensor (see Section 3.4.2).  The red areas correspond
with temperatures exceeding 125º F and the yellow class equates with
temperatures from 75 - 125º F.  Values less than 75º F are omitted.

The difference images on the second row of Figure 3-11 were calculated by
subtracting temperature values for sequential days.  They show day-to-day
changes in thermal emitance at Ground Zero.  Yellow, orange and red classes
relate to new or expanded hot spots, representing areas where the ground, which
can be far from the locations of the fires, is at least 25º F hotter than the previous
day.  Blue and purple areas are associated with appreciable cooling, where a
decrease of at least 25º F has occurred.  Although this method of analyzing and
presenting the results may have proved useful for assessing the success of
different firefighting strategies in terms of the reduction in heat intensity and
extent of hot spots it apparently was not attempted by the EMDC or the GIS
teams in New York.  'Flashover' was identified as a possible cause for the
movement and resurgence of hotspots.  Using difference maps to chart daily
changes in the hotspots would help track this effect.  If overlaid with other
datasets, including LIDAR terrain data and CAD plans showing fuel tanks, this
information could help to explain hotspot migration and predict future patterns
of change.
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 

The following section summarizes key lessons learned concerning the role of
remote sensing and GIS in emergency response.

4.1 Remote Sensing Data

• Data is critical to managing emergencies.  If an investment is made in remote
sensing, as with the imagery collected by EarthData, the data will be used
and referenced continually.

• The pre-existing New York City database of orthophotography and GIS data
provided for a common base map and georeferencing system.  These data
were essential, underpinning the entire mapping operation.

• The resolution of remote sensing is a key concern in response efforts. In terms
of temporal resolution, a short processing time is critical.  The turnaround
on the EarthData optical imagery was 12 hours. For a standard remote sensing
project, this schedule is impressive.  However, it is generally acknowledged
that real time data is optimal, with a maximum lag of three hours.

• In terms of spectral resolution, firemen expressed a strong preference for
color photographs. Orthophotos should therefore be taken in color.  Ideally,
supplementary images would extend beyond this visible region of the
spectrum to infrared wavelengths.

• Optimal spatial resolution is largely dependant upon the scale of the disaster.
For the site specific analysis at the World Trade Center, there was a strong
preference for very high resolution data. Airborne imagery should be 1 foot
or greater, and LIDAR samples should average every foot. Optical satellite
resolution should be 1 meter or greater. SAR was not used, due to the poor
resolution of the data available.  High resolution SAR of 1 meter or greater
also has the potential to aid disaster response and homeland security.

• Almost all processing occurred in an ESRI environment. Wider use should
be made of programs such as ER Mapper, ERDAS and ENVI, which are
specifically designed for the processing and analysis of remote sensing data.
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4.2 Geospatial Cross-Referencing

• It is much more powerful to examine data sets in combination, rather than
alone.

• Remote sensing data are often used as background pictures, and the
information content within the digital numbers are overlooked.  The many
uses and analytical potential of this data need to be promoted.

• Responders at the site found 3D dimensional representations very useful.
LIDAR data should have been used more frequently, both for assessing
changes in debris volume and in conjunction with other datasets.

• Keep it simple.  Although maps may convey a complex idea, the presentation
must be straightforward and simple to understand.  End users in an
emergency should be able to interpret a map in ~30 seconds (S. Ahearn).
Analysts should be trained in basic cartographic principles and the most
effective visual presentation of quantitative information.  As with all forms
of communication, presentation is equally, if not more important, than
content.

4.3 GIS Operations

• Given the many agencies with GIS personnel that were present,
communicating between and managing mapping operations proved difficult.
GIS personnel were generally unaware of activities at the other mapping
centers.  Arguably, operations would have run more smoothly, with less
duplication of effort, had the GIS units been centrally located under a
common command structure.  As with all disasters, local, state, and federal
agencies need to work together for the common good.

• GIS analysts who are primary responders need to know how to transfer
from program to program and fuse vector and raster data to produce
meaningful statistical results.  Training should be provided before hand.

• Analysts should be tasked according to expertise. Remote sensing experts
should concentrate on image processing, manipulation and analytical duties,
while GIS analysts focus on geospatial cross-referencing and map production.
There was a need for more technical consultants to guide data use and make
analytical recommendations.
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4.4 Feedback

• Remote sensing imagery and map products were given to the Fire Chiefs for
distribution.  Frequently, analysts did not hear whether the data was useful,
or how improvements could be made.  In the case of thermal data, some GIS
analysts were not informed about the need for absolute temperatures until a
lessons learned debriefing.

• Communication is also important to ensure that GIS teams have access to all
spatial datasets.  Although AVIRIS temperature readings were released to
the FDNY, this key information was not received by any of the mapping
centers.

• There were devices onsite measuring real time building movement and
temperatures (D Kehrlein).  Had this data been made available to the EMDC,
it could have been overlaid with a basemap and used to aid planning and
decision making.

•  Mobile GIS units would encourage better communication.  An on-site GIS
unit, set up to assist with the Rockaway Beach the airplane crash, proved
very useful (A. Leidner).

4.5 Education

• Emergency managers need to be versed in GIS and remote sensing
capabilities.  It is difficult to assimilate new ideas and analytical techniques
during a disaster.  Training does not need to be technical, and should be
software independent.

• Emergency managers should be made aware of different types of imagery,
its uses and usefulness, image processing techniques, geospatial cross-
referencing and outputs from statistical analysis.  Knowing the capabilities
of these datasets, personnel will be able to make informed map requests in
future disaster situations.

• Equally, GIS personnel need to understand capabilities and limitations of
the data, so that they can give advice to emergency teams.  This apriori
knowledge should improve data quality, since analysts would be familiar
with problems such as misregistration.
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 

Now that the usefulness of remote sensing data is acknowledged, a summary
should be prepared for emergency managers, which clearly explains the entire
suite of remote sensing devices and their capabilities/applications.  Along with
this remote sensing ‘menu,’ there needs to be a ‘remote sensing emergency
response directory,’ which includes information such as: access to sensors; names,
expertise and contact details for analytical teams; and details of existing
databases.  Ideally, these planning provisions would be coordinated by a federal
body, such as FEMA (A. Leidner).

To enable rapid response, acquisition and delivery needs to be streamlined.
Unmanned vehicles would be ideal for collecting data more frequently, without
concerns about clearance. Sensor specific problems, such as the misregistration
issue associated with thermal data, need to be resolved and standard procedures
established for tasks such as temperature calibration.

Image processing algorithms designed specifically for damage detection and
locating hazardous materials, or other search and rescue tasks, need to be
developed in preparation for future emergency events.  It is difficult to perform
research in a disaster response environment.

Future geospatial cross referencing efforts should transcend the boundaries of
vector attribute data, into image processing software and 3D rendering tools.
Research targeting the seamless transfer of data between database, GIS, CAD,
and image processing programs would significantly improve the efficiency of
mapping operations.

Remote sensing data and map-based products will prove to be even more
effective in future emergency situations if personnel are trained in the use of
remote sensing data.  On-site GIS units are recommended for future events,
with experts available to advise and assist response teams with data requests
and image interpretation.
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